skip to main content


Search for: All records

Creators/Authors contains: "Sullivan, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Florida IT Graduation Attainment Pathways (Flit-GAP), an NSF S-STEM, Track 3 grant effort, involves three public metropolitan institutions from Florida’s three most populous areas: Florida International University (FIU) in Miami, University of Central Florida (UCF) in Orlando, and University of South Florida (USF) in Tampa. Flit-GAP supports up to 50 students per year for each of the first 3 years of the project’; recruits are juniors from Computer Science, Information Technology, Computer Engineering, and Cybersecurity, and other computing majors. The relationship among the three institutions is formalized as the Consortium of Florida Metropolitan Research Universities. The consortium is a strategic priority of each institution. In Year 1, 42 students participated in the scholarship program at the three institutions (16 FIU; 14 UCF; 11 USF). 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  2. The Florida IT Graduation Attainment Pathways (Flit-GAP), an NSF S-STEM, Track 3 grant effort, involves three public metropolitan institutions from Florida’s three most populous areas: Florida International University (FIU) in Miami, University of Central Florida (UCF) in Orlando, and University of South Florida (USF) in Tampa. Flit-GAP supports up to 50 students per year for each of the first 3 years of the project’; recruits are juniors from Computer Science, Information Technology, Computer Engineering, and Cybersecurity, and other computing majors. The relationship among the three institutions is formalized as the Consortium of Florida Metropolitan Research Universities. The consortium is a strategic priority of each institution. In Year 1, 42 students participated in the scholarship program at the three institutions (16 FIU; 14 UCF; 11 USF). 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  3. The Florida IT Graduation Attainment Pathways (Flit-GAP), an NSF S-STEM, Track 3 grant effort, involves three public metropolitan institutions from Florida’s three most populous areas: Florida International University (FIU) in Miami, University of Central Florida (UCF) in Orlando, and University of South Florida(USF) in Tampa. Flit-GAP supports up to 50 students per year for each of the first 3 years of the project’; recruits are juniors from Computer Science, Information Technology, Computer Engineering, and Cybersecurity, and other computing majors. The relationship among the three institutions is formalized as the Consortium of Florida Metropolitan Research Universities. The consortium is a strategic priority of each institution. In Year 1, 42 students participated in the scholarship program at the three institutions (16 FIU; 14 UCF; 11 USF). 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. null (Ed.)
  5. null (Ed.)
    Intermittent floodplain channels are low‐relief conduits etched into the floodplain surface and remain dry much of the year. These channels comprise expansive systems and are important because during low‐level inundation they facilitate lateral hydraulic connectivity throughout the floodplain. Nevertheless, few studies have focused on these floodplain channels due to uncertainty in how to identify and characterize these systems in digital elevation models (DEMs). In particular, their automatic extraction from widely available DEMs is challenging due to the characteristically low‐relief and low‐gradient topography of floodplains. We applied three channel extraction approaches to the Congaree River floodplain DEM and compared the results to a channel reference map created through numerous field excursions over the past 30 years. The methods that we tested are based on flow accumulation area, topographic curvature, and mathematical morphology, or the D8, Laplacian, and bottom‐hat transform (BHT), respectively. Of the 198 km of reference channels the BHT, Laplacian, and D8 extracted 83%, 71%, and 23%, respectively, and the BHT consistently had the highest agreement with the reference network at the local (5 m) and regional (10 km) scales. The extraction results also include commission “error”, augmenting the reference map with about 100 km of channel length. Overall, the BHT method provided the best results for channel extraction, giving over 298 km in 69 km2 with a detrended regional relief of 1.9 m. Further, these analyses allow us to shed light on the meaning and use of the term “low‐relief landscapes”. 
    more » « less
  6. Data from ground-based ozone (O 3 ) vertical profiling platforms operated during the FRAPPE/DISCOVER-AQ campaigns in summer 2014 were used to characterize key processes responsible for establishing O 3 profile development in the boundary layer in the Northern Colorado Front Range. Morning mixing from the upper boundary layer and lower free troposphere into the lower boundary layer was the key process establishing the mid-morning boundary layer O 3 mixing ratio. Photochemical O 3 production throughout the boundary layer builds on the mid-morning profile. From late morning to mid-afternoon the continuing O 3 increase was nearly uniform through the depth of the profile measured by the tethersonde (~400 m). Ozonesondes flown on a near daily schedule over a four week period with multiple profiles on a number of days captured the full 1500 to 2000 m vertical extent of O 3 enhancements in the mixed boundary layer confirming O 3 production throughout the entire boundary layer. Continuous O 3 measurements from the Boulder Atmospheric Observatory (BAO) tall tower at 6 m and 300 m showed hourly O 3 at the 6 m level ≥75 ppb on 15% of the days. The diurnal variation on these days followed a pattern similar to that seen in the tethersonde profiles. The association of high O 3 days at the BAO tower with transport from sectors with intense oil and natural gas production toward the northeast suggests emissions from this industry were an important source of O 3 precursors and are crucial in producing peak O 3 events in the NCFR. Higher elevation locations to the west of the NCFR plains regularly experience higher O 3 values than those in the lower elevation NCFR locations. Exposure of populations in these areas is not captured by the current regulatory network, and likely underestimated in population O 3 exposure assessments. 
    more » « less
  7. Free, publicly-accessible full text available December 1, 2024